Hot or Not:
Revealing Hidden Services by their Clock Skew

Author: Stephen Murdoch

Presented at the ACM conference on Computer and Communications Security '06

Presented by: Naman Agarwal
Motivation

• Systems such as Tor offer location hidden services

• Anonymous services help protect the owner allowing for censorship resistant content. Also helps prevent selective DoS attacks.

• Due to the credible threat it is important to evaluate the security not only of deployed systems as well as proposed changes.

• The paper presents a potential attack on anonymity systems based on measuring clock skew.
Assumptions on the attacker

• The main goal of the attacker is to figure out the IP address of the operator

• The attacker is not assumed to be part of the anonymity system but can access the hidden services exposed by it.

• The attacker has a list of a limited number of candidate hosts for a hidden service.

• The attacker cannot observe, inject, delete or modify any network traffic other than that to or from his computer.
Existing Attacks on Tor

- Tor is an overlay network and therefore machines can be accessed over the anonymous channel as well as directly.
- This makes Tor susceptible to attacks based on the analysis of traffic patterns.
- The attacker induces traffic patterns in the network and then probes the latency of possible intermediate nodes looking for correlations. <Add reference here>
- Such attacks can be prevented by establishing a QoS guarantee where every stream passing through a node is essentially isolated from another.
- Essentially every Tor node has a given capacity which is divided into several slots. Each circuit is assigned one slot and is given a guaranteed data rate regardless of others.
Clock Skew based attacks

• The key observation behind such attacks is that when circuits carried by a node become idle, the CPU load reduces and the temperature reduces.

• This has a measurable effect on a quantity called clock skew and can be observed remotely.

• Thus an attacker can distinguish between a busy vs an idle CPU.
Background on Clock Skew

- Lets first fix a reference frame for time. For the attack’s purpose we will think of the clock with the adversary as our reference for time.

- A clock C is designed to count the time elapsed since some initial time i(C).

- Clock C’s *resolution*, r(C), is the smallest unit by which the clock can be incremented, and we refer to each such increment as a *tick*. The inverse of such an increment is called the intended *frequency* h(C).

- A resolution of 10 ms means that the clock is designed to have 10 ms granularity, not that the clock is always incremented *exactly* every 10 ms.

- This induces an *offset* o(t) defined as the difference between the clock’s reported time and the actual time (t). The skew s(t) is the derivative of o(t) at time t.

- We split the skew of the target machine into two components s_c which represents a constant upper bound on the skew and a small time varying component s(t) which is assumed wlog to be negative.
Timestamps

• To measure the time of a remote machine the authors make use of TCP timestamps by establishing direct TCP connections with the machine.

• Define $T(t_S)$ to be the timestamp sent at time t_S.

• The timestamp sent is given by

$$T(t_S) = \left[h \cdot \left(t_S + s_ct_S + \int_0^{t_S} s(t)dt \right) \right]$$
We sample timestamps T_i by continuously choosing a random time between ticks. Therefore the quantization noise due to the floor can be captured by subtracting a random variable c uniform in $[0,1]$.

The time when the remote machine sent the sample according to the remote machine is given by

$$\tilde{t}_i = \frac{T_i}{h} = t_{s_i} + s_c t_{s_i} + \int_0^{t_{s_i}} s(t)dt - \frac{c_i}{h}$$
Offset Computation

- We cannot compute the sending machine’s clock skew but we can compute the offset $o(i)$ between the timestamped time according to the remote machine and our reference. This will be given by

$$\tilde{t}_i - t_{s_i}$$

- However we only have the time when the packet was received. Therefore we need to factor in noise due to latency d_i. The expression for the offset finally looks like

$$o_i = \tilde{t}_i - t_{r_i} = s_c t_{r_i} + \int_0^{t_{r_i}} s(t) dt - c_i/h - d_i$$
Computing the constant skew

Best Fit Upper Bound:
Slope gives an estimate for s_c
Impact of temperature
Effect of temperature on the $s(t)$

$\hat{s}_c = 125$, min $\hat{s}(t) = -0.010$, max $\hat{s}(t) = 0.14$ ppm

Non-linear offset: $\hat{\sigma} - \hat{\beta}$

Variable skew: $-\hat{s}(t)$
Attacking Tor - Setup

- The authors now simulate a Tor scenario to show that observing the clock skew and hence the temperature can be used to correlate the CPU usage of a target machine.
Results - 1

\[\hat{s}_c = 95, \ \text{min } \hat{s}(t) = -0.11, \ \text{max } \hat{s}(t) = 0.22 \ \text{ppm} \]
Results - 2

\[\hat{s}_c = 180, \min \hat{s}(t) = -0.059, \max \hat{s}(t) = 0.25 \text{ ppm} \]
Possible defenses

• Use of more expensive over controlled crystal oscillators which behave better with temperature

• Always run at Maximum CPU load

• External access to timing information can be restricted or jittered
Summary

• QoS guarantees help towards preventing traffic analysis based attacks on anonymity systems.

• Even in presence of such guarantees the idle/busy period on a CPU gets reflected on its temperature and in turn on its clock skew.

• The clock skew can be measured remotely using TCP timestamps
Strengths

• Although the technique of measuring clock skew to finger-print devices had been established, the paper is the first to apply temperature modulation in conjunction with skew measurements to reveal hidden information.

• The attack circumvents the QoS based defenses proposed to counter traffic analysis based attacks.

• The attack establishes a more general paradigm of attack where “high” confidentiality level information is leaked to a agent with access to “low” confidentiality level information through the hardware.
Weaknesses

• More of a proof-of-concept than an actual attack.

• A very small scale experiment done on a private network with conditions designed to be favorable.

• The issue of latency noise having an effect of measurements has not been strongly considered.
Extensions

- Geolocation
- Noise Mitigation
- Classical Covert Channels